Case study: GALNT6 xQTL and AD GWAS¶
This notebook documents the analysis of xQTL case study on a targeted gene, GALNT6.
- Section 0: Sanity check
- Section 1: Fine-mapping for xQTL and GWAS
- Section 2: Multi-context colocalization with Bellenguez 2022
- Section 3: Refinement of colocalized loci with other AD GWAS
- Section 4: Assessment of multi-context xQTL effect sizes
- Section 5: Multi-context causal TWAS (including conventional TWAS and MR)
- Section 6: Context specific multi-gene fine-mapping
- Section 7: Epigenomic QTL and their target regions
- Section 8: Context focused validation in other xQTL data
- Section 9: Non-linear effects of xQTL
- Section 10: in silico functional studies in iPSC model
- Section 11: Functional annotations of selected loci
- Section 12: Candidate loci as trans-xQTL
Overview¶
FunGen-xQTL resource contains 67 xQTL contexts as well as 9 AD GWAS fine-mapped genome-wide. The overarching goal for case studies is to use these resource to raise questions and learn more about gene targets of interest.
Overall, a case study consists of the following aspects:
- Check the basic information of the gene
- Check the existing xQTL and integrative analysis results, roughly including
- Summary table for univariate fine-mapping
- Marginal association results
- Multi-gene and multi-context fine-mapping
- Multi-context colocalization with AD GWAS
- TWAS, MR and causal TWAS
- Integration with epigenetic QTL
- Quantile QTL
- Interaction QTL
- Validation:
- Additional xQTL data in FunGen-xQTL
- Additional AD GWAS data-set already generated by FunGen-xQTL
- In silico functional studies
- Additional iPSC data-sets
- Functional annotations of variants, particularly in relevant cellular contexts
- Creative thinking: generate hypothesis, search in literature, raise questions to discuss
Computing environment setup¶
Interactive analysis will be done on AWS cloud powered by MemVerge. Please contact Gao Wang to setup accounts for you to start the analysis.
Please follow instructions on https://wanggroup.org/productivity_tips/mmcloud-interactive to configure your computing environment. Here are some additional packages you need to install after the initial configuration, in order to perform these analysis: in terminal with bash:
micromamba install -n r_libs r-pecotmr
in R:
install.packages('BEDMatrix')
How to Use This Notebook¶
- Before you start: Load functions from
cb_plot.R
andutilis.R
, located at/data/interactive_analysis/rf2872/codes/
. These functions and resources are packaged to streamline the analysis and ensure everything is as clean as possible. And also the codes for ColocBoost under path/data/colocalization/colocboost/R
. - Inside of this notebook, use
sed -i
orCtrl+F
to replace the geneGALNT6
with the gene you want to analyze. - For detailed analysis in some sections, please refer to the corresponding analysis notebooks as indicated. These companion notebooks are available under this same folder. The rest of the tasks can be completed with a few lines of code, as demonstrated in this notebook.
- Similarly for the companion notebooks you should also use the
sed -i
orCtrl+F
replacing gene_name (GALNT6 in this case) with the gene you want to investigate.
While using this notebook, you may need to generate three intermediate files from Sections 1 and 2, which will be useful for downstream analysis:
- a. Section 1:
- Fine-mapping contexts that indicate shared signals with AD,
GALNT6_finemapping_contexts.rds
. This can be used as input for Section 8 the multi-cohort validation step - A subset of the xQTL-AD table,
Fungen_xQTL_allQTL.overlapped.gwas.export.GALNT6.rds
. This can be used as input for Section 12.
- Fine-mapping contexts that indicate shared signals with AD,
- b. Section 2: A variant list showing colocalization in cohorts we analyzed with ColocBoost,
GALNT6_colocboost_res.rds
. this can be used as input for Sections 7, 9, 10, and 12.
Section 0: Sanity check¶
Check the basic information of the gene¶
- To gain a preliminary understanding of this gene’s expression—specifically, whether it is cell-specific—can help us quickly determine if our results are consistent with expectations.
Useful websites:
- check gene function, (immune) cell type specificity, tissue specifity, protein location: https://www.proteinatlas.org
- check gene position and structure: https://www.ncbi.nlm.nih.gov/gene/
- other collective information: https://www.genecards.org
Check the existing results which are inputs to this analysis¶
source('../../codes/cb_plot.R')
source('../../codes/utilis.R')
for(file in list.files("/data/colocalization/colocboost/R", pattern = ".R", full.names = T)){
source(file)
}
gene_name = 'GALNT6'
dir.create(paste0('plots/', gene_name), recursive = T)
get basic target gene information
target_gene_info <- get_gene_info(gene_name = gene_name)
target_gene_info
- $gene_info
A data.table: 1 x 14 region_id #chr start end TSS LD_matrix_id LD_sumstats_id LD_sumstats_id_old TADB_index TADB_id gene_start gene_end sliding_windows gene_name <chr> <chr> <dbl> <dbl> <int> <chr> <chr> <chr> <chr> <chr> <int> <int> <chr> <chr> ENSG00000139629 chr12 48680000 52392867 51392866 chr12:47790772-48762437,chr12:48762437-51189586,chr12:51189586-52645289 12_47790772-48762437,12_48762437-51189586,12_51189586-52645289 12_47790772-48762437,12_48762437_51189586,12_51189586_52645289 TADB_968,TADB_969 chr12_47653211_53108261,chr12_50815042_54677408 51392867 51351247 chr12:41238446-49957487,chr12:42353866-53108261,chr12:44164185-54677408,chr12:47653211-57041806,chr12:50815042-58959148,chr12:52006281-61419293 GALNT6 - $target_LD_ids
A matrix: 1 x 3 of type chr chr12:47790772-48762437 chr12:48762437-51189586 chr12:51189586-52645289 - $target_sums_ids
A matrix: 1 x 3 of type chr 12_47790772-48762437 12_48762437-51189586 12_51189586-52645289 - $gene_region
- 'chr12:48680000-52392867'
- $target_TAD_ids
A matrix: 1 x 2 of type chr chr12_47653211_53108261 chr12_50815042_54677408
gene_id = target_gene_info$gene_info$region_id
chrom = target_gene_info$gene_info$`#chr`
Take a quick look for the expression of target gene in ROSMAP bulk data, we don't want them to be too low
source('../../codes/utilis.R')
expression_in_rosmap_bulk(target_gene_info)
region_p
Bellenguez et al GWAS signals has many overlap with CS from other xQTL sources. This motivates us to look further. The figure above shows the ranges of CS to give us a loci level idea. Below, we show the variants in those CS, color-coding the variants that are shared between them in the same color. In particular, AD GWAS signals are also captured by a few xQTL data, although at this point we don't have formal statistical (colocalization) evidences for these observations yet.
pip_p
This is done using ColocBoost
. The most updated version of ColocBoost results are under path
s3://statfungen/ftp_fgc_xqtl/analysis_result/ColocBoost/2024_9/
cb_res <- readRDS(paste0("/data/analysis_result/ColocBoost/2024_9/",gene_id,"_res.rds") )
#save colocboost results
cb_res_table <- get_cb_summary(cb_res)
saveRDS(cb_res_table, paste0(gene_name, "_colocboost_res.rds"))
cb <- plot_cb(cb_res = cb_res, cex.pheno = 1.5, x.phen = -0.2)
pdf('plots/GALNT6/sec2.colocboost_res.pdf', width = 10, height = 5)
replayPlot(cb$p)
dev.off()
# colocalized variants
cb_res_table
colocalized phenotypes | purity | # variants | highest VCP | colocalized index | colocalized variants | max_abs_z_variant | cset_id |
---|---|---|---|---|---|---|---|
<chr> | <dbl> | <dbl> | <dbl> | <chr> | <chr> | <chr> | <chr> |
Oli; DLPFC; AC; PCC; Monocyte; AD_Bellenguez_2022 | 1.000000 | 1 | 0.9996812 | 10602 | chr12:51362485:T:C | chr12:51362485:T:C | coloc_sets:Y1_Y2_Y3_Y4_Y5_Y12:CS1 |
Oli; DLPFC; AC; PCC; Monocyte | 0.983802 | 2 | 0.8964368 | 10715; 10708 | chr12:51391617:A:AAGCCGC; chr12:51389636:T:A | chr12:51389636:T:A | coloc_sets:Y1_Y2_Y3_Y4_Y5:CS2 |
# effect sign for each coloc sets
get_effect_sign_csets(cb_res)
- $`coloc_sets:Y1_Y2_Y3_Y4_Y5_Y12:CS1`
A data.frame: 1 x 7 variants Oli DLPFC AC PCC Monocyte AD_Bellenguez_2022 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> chr12:51362485:T:C chr12:51362485:T:C -19.06122 -22.94871 -24.94123 -16.17026 -4.208866 4.43617 - $`coloc_sets:Y1_Y2_Y3_Y4_Y5:CS2`
A data.frame: 2 x 6 variants Oli DLPFC AC PCC Monocyte <chr> <dbl> <dbl> <dbl> <dbl> <dbl> chr12:51391617:A:AAGCCGC chr12:51391617:A:AAGCCGC 5.231128 8.410379 7.724888 4.454380 3.850570 chr12:51389636:T:A chr12:51389636:T:A 5.392984 8.619879 7.379238 4.261449 3.650899
# LD between coloc sets
get_between_purity_simple(cb_res, gene.name = gene_id, path = '/data/colocalization/QTL_data/eQTL/')
coloc_csets_1 | coloc_csets_2 | min_abs_cor | max_abs_cor | median_abs_cor |
---|---|---|---|---|
coloc_sets:Y1_Y2_Y3_Y4_Y5_Y12:CS1 | coloc_sets:Y1_Y2_Y3_Y4_Y5:CS2 | 0.0511422692396121 | 0.0523572629434627 | 0.0517497660915374 |
Here, different colors refer to different 95% Colocalization Sets (CoS, a metric developed in ColocBoost indicating that there is 95% probabilty that this CoS captures a colocalization event). We only included ROSMAP data for this particular ColocBoost analysis. In this case, we observe cell specific eQTL, bulk sQTL colocalization on ROSMAP data with AD as two separate CoS, suggesting two putative causal signals. We did not detect colocalization with pQTL of statistical significance although from Section 1 there are some overlap with pQTL signals in fine-mapping CS, the overlapped variants in CS have small PIP.
Section 3: Refinement of colocalized loci with other AD GWAS¶
Here we refine the colocalization with other AD GWAS to iron out any heterogeniety between studies (heterogeniety can come from many sources), to get additional candidate loci from these more heterogenous sources as candidates to study.
AD_cohorts <- c('AD_Jansen_2021', 'AD_Bellenguez_EADB_2022', 'AD_Bellenguez_EADI_2022',
'AD_Kunkle_Stage1_2019', 'AD_Wightman_Excluding23andMe_2021',
'AD_Wightman_ExcludingUKBand23andME_2021', 'AD_Wightman_Full_2021')
cb_ad <- plot_cb(cb_res = cb_res, cex.pheno = 1.5, x.phen = -0.2, add_gwas = TRUE, gene_id = gene_id, cohorts = AD_cohorts)
No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.
pdf('plots/GALNT6/sec3.colocboost_res_allad.pdf', width = 10, height = 5)
replayPlot(cb_ad$p)
dev.off()
Section 4: Assessment of multi-context xQTL effect sizes¶
Option 1: ColocBoost + MASH¶
Use colocboost variants and check for mash posterior contrast to see if the effect size are shared or specific or even opposite. Advantage is that colocboost result is AD GWAS informed; issue is that marginal posterior effects is not always the joint
mash_p <- mash_plot(gene_name = 'GALNT6')
for (plot in mash_p) {
print(plot)
}
Option 2: mvSuSiE¶
Use mvSuSiE multicontext fine-mapping results --- the bubble plot to check posterior effects. Issue is that we don't have this results yet, and this is limited to one cohort at a time, without information from AD.
We should go for option 1 by default and if we want to make claim about opposite effect size we double-check with mvSuSiE multicontext analysis.
The most updated version of cTWAS analysis are under path
s3://statfungen/ftp_fgc_xqtl/analysis_result/cTWAS/
TWAS results¶
We report TWAS from all contexts and methods from the pipeline. Here we will filter it down to the best performing methods and only keep contexts that are significant.
plot_TWAS_res(gene_id = gene_id, gene_name = gene_name)
MR results¶
This is only available for genes that are deemed significant in TWAS and have summary statistics available for effect size and standard errors in GWAS, in addition to z-scores --- current version does not support z-scores although we will soon also support z-scores in MR using MAF from reference panel.
cTWAS results¶
To be updated soon.
A quick analysis: using the xQTL-AD summary table (flatten table)¶
We extract from xQTL-AD summary table the variants to get other genes also have CS with the variants shared by target gene and AD.
multigene_flat <- get_multigene_multicontext_flatten('Fungen_xQTL_allQTL.overlapped.gwas.export.GALNT6.rds', sQTL = 'no_MSBB')
multigene_flat
gene_id | #chr | start | end | gene_name | contexts |
---|---|---|---|---|---|
<chr> | <chr> | <int> | <int> | <chr> | <chr> |
ENSG00000050405 | chr12 | 50283545 | 50283546 | LIMA1 | MiGA_THA_eQTL |
ENSG00000050426 | chr12 | 51047961 | 51047962 | LETMD1 | MiGA_GFM_eQTL,MiGA_SVZ_eQTL,ROSMAP_PCC_sQTL |
ENSG00000050438 | chr12 | 51391316 | 51391317 | SLC4A8 | MiGA_SVZ_eQTL,Oli_DeJager_eQTL,Oli_Kellis_eQTL,Oli_mega_eQTL,DLPFC_Bennett_pQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,STARNET_eQTL |
ENSG00000061273 | chr12 | 47833131 | 47833132 | HDAC7 | MiGA_SVZ_eQTL |
ENSG00000066084 | chr12 | 50504984 | 50504985 | DIP2B | MiGA_SVZ_eQTL,MiGA_THA_eQTL,BM_36_MSBB_eQTL,MSBB_BM36_pQTL |
ENSG00000066117 | chr12 | 50085199 | 50085200 | SMARCD1 | MiGA_GTS_eQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000079387 | chr12 | 48106078 | 48106079 | SENP1 | ROSMAP_DLPFC_sQTL |
ENSG00000086159 | chr12 | 49967238 | 49967239 | AQP6 | MiGA_GTS_eQTL |
ENSG00000110844 | chr12 | 49568217 | 49568218 | PRPF40B | Ast_DeJager_eQTL,Oli_DeJager_eQTL,Exc_DeJager_eQTL,Inh_DeJager_eQTL,Oli_Kellis_eQTL,OPC_Kellis_eQTL,Exc_Kellis_eQTL,Inh_Kellis_eQTL,Ast_mega_eQTL,Exc_mega_eQTL,Inh_mega_eQTL,OPC_mega_eQTL,Oli_mega_eQTL |
ENSG00000110881 | chr12 | 50057547 | 50057548 | ASIC1 | MiGA_GFM_eQTL,AC_DeJager_eQTL,Oli_mega_eQTL |
ENSG00000110911 | chr12 | 51028565 | 51028566 | SLC11A2 | MiGA_GTS_eQTL,Ast_DeJager_eQTL,Exc_Kellis_eQTL,Exc_mega_eQTL |
ENSG00000110934 | chr12 | 51324667 | 51324668 | BIN2 | MiGA_GFM_eQTL,Mic_DeJager_eQTL |
ENSG00000111057 | chr12 | 52948870 | 52948871 | KRT18 | MiGA_SVZ_eQTL |
ENSG00000111371 | chr12 | 46270016 | 46270017 | SLC38A1 | ROSMAP_PCC_sQTL |
ENSG00000123268 | chr12 | 50763709 | 50763710 | ATF1 | MiGA_GTS_eQTL,ROSMAP_AC_sQTL |
ENSG00000123349 | chr12 | 53295290 | 53295291 | PFDN5 | MiGA_SVZ_eQTL |
ENSG00000123352 | chr12 | 49366583 | 49366584 | SPATS2 | MiGA_GTS_eQTL,BM_44_MSBB_eQTL,Oli_Kellis_eQTL,Exc_mega_eQTL,Oli_mega_eQTL |
ENSG00000123358 | chr12 | 52022831 | 52022832 | NR4A1 | ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000123395 | chr12 | 52069245 | 52069246 | ATG101 | STARNET_eQTL |
ENSG00000123416 | chr12 | 49131396 | 49131397 | TUBA1B | STARNET_eQTL |
ENSG00000125084 | chr12 | 48978321 | 48978322 | WNT1 | MiGA_THA_eQTL |
ENSG00000129315 | chr12 | 48716997 | 48716998 | CCNT1 | MiGA_GFM_eQTL,MiGA_SVZ_eQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000135390 | chr12 | 53677407 | 53677408 | ATP5MC2 | ROSMAP_DLPFC_sQTL |
ENSG00000135451 | chr12 | 49323235 | 49323236 | TROAP | MiGA_GTS_eQTL |
ENSG00000135457 | chr12 | 51173134 | 51173135 | TFCP2 | MiGA_THA_eQTL |
ENSG00000135472 | chr12 | 49904216 | 49904217 | FAIM2 | MiGA_GFM_eQTL,MiGA_GTS_eQTL,Oli_DeJager_eQTL,Oli_Kellis_eQTL,Inh_Kellis_eQTL,Oli_mega_eQTL,ROSMAP_AC_sQTL |
ENSG00000135503 | chr12 | 51951698 | 51951699 | ACVR1B | MiGA_GTS_eQTL,MiGA_THA_eQTL,Exc_DeJager_eQTL,Inh_DeJager_eQTL,ROSMAP_DLPFC_sQTL,STARNET_eQTL |
ENSG00000135519 | chr12 | 49539029 | 49539030 | KCNH3 | ROSMAP_PCC_sQTL |
ENSG00000139537 | chr12 | 48904109 | 48904110 | CCDC65 | MiGA_SVZ_eQTL,Ast_DeJager_eQTL,Exc_DeJager_eQTL,Inh_DeJager_eQTL,Oli_Kellis_eQTL,Exc_mega_eQTL |
ENSG00000139549 | chr12 | 49094800 | 49094801 | DHH | MiGA_SVZ_eQTL |
... | ... | ... | ... | ... | ... |
ENSG00000161800 | chr12 | 50033135 | 50033136 | RACGAP1 | MiGA_SVZ_eQTL,Oli_Kellis_eQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000161813 | chr12 | 50392382 | 50392383 | LARP4 | ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000161835 | chr12 | 52006945 | 52006946 | TAMALIN | MiGA_SVZ_eQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000167528 | chr12 | 48351413 | 48351414 | ZNF641 | MiGA_SVZ_eQTL |
ENSG00000167548 | chr12 | 49060793 | 49060794 | KMT2D | ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
ENSG00000167550 | chr12 | 49070024 | 49070025 | RHEBL1 | MiGA_THA_eQTL |
ENSG00000167553 | chr12 | 49188735 | 49188736 | TUBA1C | Knight_eQTL |
ENSG00000167612 | chr12 | 51888008 | 51888009 | ANKRD33 | MiGA_GTS_eQTL |
ENSG00000167767 | chr12 | 52192013 | 52192014 | KRT80 | BM_22_MSBB_eQTL |
ENSG00000169884 | chr12 | 48971734 | 48971735 | WNT10B | MiGA_GTS_eQTL,BM_10_MSBB_eQTL,BM_22_MSBB_eQTL |
ENSG00000170421 | chr12 | 52949919 | 52949920 | KRT8 | MiGA_SVZ_eQTL,MiGA_THA_eQTL |
ENSG00000170523 | chr12 | 52321397 | 52321398 | KRT83 | BM_10_MSBB_eQTL,BM_22_MSBB_eQTL,DLPFC_DeJager_eQTL,PCC_DeJager_eQTL,ROSMAP_DLPFC_sQTL |
ENSG00000170545 | chr12 | 51270414 | 51270415 | SMAGP | DLPFC_DeJager_eQTL |
ENSG00000170653 | chr12 | 53626409 | 53626410 | ATF7 | ROSMAP_DLPFC_sQTL |
ENSG00000174233 | chr12 | 48789088 | 48789089 | ADCY6 | ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000174243 | chr12 | 48852841 | 48852842 | DDX23 | Ast_DeJager_eQTL,ROSMAP_PCC_sQTL |
ENSG00000177627 | chr12 | 48482497 | 48482498 | C12orf54 | MiGA_SVZ_eQTL |
ENSG00000178401 | chr12 | 49346887 | 49346888 | DNAJC22 | BM_10_MSBB_eQTL,DLPFC_DeJager_eQTL |
ENSG00000178449 | chr12 | 50112081 | 50112082 | COX14 | MiGA_THA_eQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL |
ENSG00000181418 | chr12 | 48999374 | 48999375 | DDN | ROSMAP_PCC_sQTL |
ENSG00000182544 | chr12 | 53251250 | 53251251 | MFSD5 | MiGA_THA_eQTL |
ENSG00000183283 | chr12 | 51238723 | 51238724 | DAZAP2 | ROSMAP_DLPFC_sQTL |
ENSG00000184271 | chr12 | 51217707 | 51217708 | POU6F1 | ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL |
ENSG00000185432 | chr12 | 50923471 | 50923472 | METTL7A | MiGA_SVZ_eQTL,MiGA_THA_eQTL,Oli_DeJager_eQTL,Oli_mega_eQTL |
ENSG00000186666 | chr12 | 49843105 | 49843106 | BCDIN3D | MiGA_GFM_eQTL,DLPFC_DeJager_eQTL |
ENSG00000187778 | chr12 | 49568144 | 49568145 | MCRS1 | ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL |
ENSG00000196876 | chr12 | 51590265 | 51590266 | SCN8A | ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
ENSG00000205352 | chr12 | 53441677 | 53441678 | PRR13 | MiGA_SVZ_eQTL,BM_44_MSBB_eQTL |
ENSG00000205426 | chr12 | 52291533 | 52291534 | KRT81 | BM_36_MSBB_eQTL,ROSMAP_DLPFC_sQTL |
ENSG00000272822 | chr12 | 48957364 | 48957365 | AC073610.1 | ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL |
Other genes implicated are PROC and HS6ST1 in MiGA cohort which may share causal eQTL with GALNT6. Further look into the data-set --- using these genes as targets and repeating what we did above for GALNT6 --- might be needed to establish a more certain conclusion.
Alternatively, we may be able to apply a multi-gene statistical fine-mapping test on GALNT6 region to find these genes, as you will see in the section below.
A statistically solid approach: mvSuSiE multi-gene analysis¶
This multi-gene fine-mapping analysis was done for each xQTL context separately. We will need to check the results for all contexts where this gene has an xQTL, in order to identify if there are other genes also sharing the same xQTL with this target gene. We included other genes in the same TAD window along with this gene, and extended it into a sliding window approach to include multiple TADs just in case. You need to check the sliding windows belongs to that gene (TSS) on analysis repo.
sliding_windows <- target_gene_info$gene_info$sliding_windows %>% strsplit(., ',') %>% unlist %>% as.character
sliding_windows
- 'chr12:41238446-49957487'
- 'chr12:42353866-53108261'
- 'chr12:44164185-54677408'
- 'chr12:47653211-57041806'
- 'chr12:50815042-58959148'
- 'chr12:52006281-61419293'
The most updated version of mvSuSiE multi-gene results are under path
s3://statfungen/ftp_fgc_xqtl/analysis_result/mvsusie_multi_gene_test/multi_gene/
Currently it is still WIP. You can revisit this later when we prompt you to. Here is an example for GALNT6
:
mnm_gene <- list()
for (window in sliding_windows) {
mnm_gene_tmp <- NULL
mnm_gene_tmp <- tryCatch(
readRDS(paste0('/data/analysis_result/mvsusie_multi_gene/multi_gene/ROSMAP_multi_gene.', window, '.mnm.rds')),
error = function(e) NULL
)
if (!is.null(mnm_gene_tmp)) {
if(target_gene_info$gene_info$region_id %in% mnm_gene_tmp$mvsusie_fitted$condition_names){
tryCatch({
p <- mvsusieR::mvsusie_plot(mnm_gene_tmp$mvsusie_fitted, sentinel_only = F, add_cs = T)
print(p) # This ensures the plot is displayed in JupyterLab
}, error = function(e) NULL)
} else {
message('There is mnm result for sliding window ',window,', but not include target gene ', gene_name, ' in CS')
}
mnm_gene <- append(mnm_gene, list(mnm_gene_tmp))
}
}
In this case, there is no statistical evidence for GALNT6
sharing any of its xQTL with other genes in ROSMAP Microglia data we looked into; although we have not analyzed MiGA this way yet (which showed some potential signals from the quick analysis above).
Generate a crude plot to determined whether the story is interesting¶
This is a crude version of the case study plot which shows the fsusie Effect (colored line), the gene body (black arrow), the epi-QTL (large dots with the same color as the effects) and ADGWAS cs position (small red dots).
Only produce the refine plot if we can see either:
- There are sharing snp between epi-QTL and AD CS
- There are the AD CS located within one of the effect range
- The crude plot suggest something interesting
options(repr.plot.width = 40, repr.plot.height = 40)
ggplot() + theme_bw() + facet_grid(cs_coverage_0.95 + study + region ~ ., labeller = labeller(.rows = function(x) gsub("([_:,-])", "\n", x)), scale = "free_y") +
theme(text = element_text(size = 20), strip.text.y = element_text(size = 25, angle = 0.5)) +
# xlim(view_win) +
ylab("Estimated effect") +
# geom_line(data = haQTL_df %>% mutate(study = "haQTL effect") %>% filter(CS == 5),
# aes_string(y = "fun_plot", x = "x", col = "CS"), size = 4, col = "#00AEEF") +
geom_line(data = effect_of_interest ,
aes_string(y = "fun_plot", x = "x", col = "cs_coverage_0.95"), size = 2) +
geom_point(data = effect_of_interest ,
aes_string(y = "pip", x = "pos", col = "cs_coverage_0.95"), size = 10) +
theme(text = element_text(size = 40), strip.text.y = element_text(size = 15, angle = 0.5),
axis.text.x = element_text(size = 40), axis.title.x = element_text(size = 40)) +
xlab("Position") +
ylab("Estimated\neffect") +
geom_segment(arrow = arrow(length = unit(1, "cm")), aes(x = gene_start, xend = gene_end, y = 1, yend = 1), size = 6,
data = tar_gene_info$gene_info, alpha = 0.3) +
geom_text(aes(x = (gene_start + gene_end) / 2, y = 1 , label = gene_name), size = 10,
data = tar_gene_info$gene_info)+
geom_point(aes(x = pos, y = pip ) ,color = "red", data = flatten_table%>%filter( str_detect(study,"AD_") , cs_coverage_0.95 != 0 )%>%mutate(AD_study = study%>%str_replace_all("_","\n" ))%>%select(-study,-region,-cs_coverage_0.95) )
Section 8: Context focused validation in other xQTL data¶
see notebook
add fake version for now, so you don't have to refer to above link
Background: our "discovery set" is ROSMAP but we have additional "validation" sets including:
- STARNET
- MiGA
- KnightADRC
- MSBB
- metaBrain
- UKB pQTL
TODO:
- Get from Carlos WashU CSF based resource (pQTL and metabolomic QTL)
This section shows verification of findings from these data-sets. In principle we should check them through sections 1-6 more formally. In practice we will start with colocalization via colocboost --- since our study is genetics (variant and loci level) focused. We can selectively follow them up for potentially intereting validations. We therefore only demonstrate validation via colocboost as a starting point.
finempping_contexts <- readRDS(paste0(gene_name, '_finemapping_contexts.rds')) # from sec1
finempping_contexts <- get_norosmap_contexts(finempping_contexts)
cb_ad <- plot_cb(cb_res = cb_res, cex.pheno = 1.5, x.phen = -0.2, add_QTL = TRUE, cohorts = finempping_contexts, gene_id = gene_id)
No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.
In conclusion from what's shown above, when we check the association signals in STARNET and MiGA on colocalization established from ROSMAP and AD GWAS, we see additional evidences.
APOE interaction¶
options(repr.plot.width=6, repr.plot.height=6)
ggplot(GALNT6_int_res, aes(x = variant_id, y = qvalue_interaction)) +
geom_point(alpha = 0.7, size = 6) +
labs(title = "qvalue for GALNT6 csets in interaction association nalysis",
x = "Gene Name",
y = "qvalue_interaction",
size = "qvalue_interaction") +
theme_minimal(base_size = 14) +
theme(panel.background = element_blank(),
panel.grid.major = element_line(color = "grey80"),
legend.position = NULL,
axis.text.x = element_text(angle = 45, hjust = 1)) + ylim(0,1)
# scale_color_manual(values = colorRampPalette(brewer.pal(8, "Set1"))(length(unique(flat_var$gene_name))))
ggsave('plots/GALNT6/sec11.interaction_association_GALNT6_lessPIP25.pdf', height = 5, width = 8)
In conclusion, there is no interaction QTL with APOE identified.
vars_p
apoe_p
Section 11: Functional annotations of selected loci¶
see notebook
TODO
- Touch base with Ryan on the snATAC annotations
- Run this by Pavel to see if there are additional comments on how we do this
func_p
options(repr.plot.width=12, repr.plot.height=6)
if(!is.null(flat_var)){
p = ggplot(flat_var, aes(x = gene_name, y = pip, size = pip)) +
geom_point(alpha = 0.7) +
labs(title = paste0("PIP values for trans fine mapped Genes in ", gene_name ," csets with AD"),
x = "Gene Name",
y = "PIP",
size = "PIP",
color = "CS Coverage 0.95 Min Corr") +
theme_minimal(base_size = 14) +
theme(panel.background = element_blank(),
panel.grid.major = element_line(color = "grey80"),
legend.position = NULL,
axis.text.x = element_text(angle = 45, hjust = 1))
# scale_color_manual(values = colorRampPalette(brewer.pal(8, "Set1"))(length(unique(flat_var$gene_name))))
ggsave(paste0('plots/CR1/sec12.trans_fine_mapping_',gene_name,'.pdf'),p, height = 5, width = 8)
p
} else{
message('There are no detectable trans signals for ', gene_name)
}
Creative thinking: generate hypothesis, search in literature, raise questions to discuss¶
You can now generate some preliminary hypotheses based on the above results. Next, you should search for evidence in the literature to support or refine these hypotheses and identify additional analyses needed to confirm them.