Case study: RABEP1 xQTL and AD GWAS¶
This notebook documents the analysis of xQTL case study on a targeted gene, RABEP1.
- Section 0: Sanity check
- Section 1: Fine-mapping for xQTL and GWAS
- Section 2: Multi-context colocalization with Bellenguez 2022
- Section 3: Refinement of colocalized loci with other AD GWAS
- Section 4: Assessment of multi-context xQTL effect sizes
- Section 5: Multi-context causal TWAS (including conventional TWAS and MR)
- Section 6: Context specific multi-gene fine-mapping
- Section 7: Epigenomic QTL and their target regions
- Section 8: Context focused validation in other xQTL data
- Section 9: Non-linear effects of xQTL
- Section 10: in silico functional studies in iPSC model
- Section 11: Functional annotations of selected loci
- Section 12: Candidate loci as trans-xQTL
Overview¶
FunGen-xQTL resource contains 67 xQTL contexts as well as 9 AD GWAS fine-mapped genome-wide. The overarching goal for case studies is to use these resource to raise questions and learn more about gene targets of interest.
Overall, a case study consists of the following aspects:
- Check the basic information of the gene
- Check the existing xQTL and integrative analysis results, roughly including
- Summary table for univariate fine-mapping
- Marginal association results
- Multi-gene and multi-context fine-mapping
- Multi-context colocalization with AD GWAS
- TWAS, MR and causal TWAS
- Integration with epigenetic QTL
- Quantile QTL
- Interaction QTL
- Validation:
- Additional xQTL data in FunGen-xQTL
- Additional AD GWAS data-set already generated by FunGen-xQTL
- In silico functional studies
- Additional iPSC data-sets
- Functional annotations of variants, particularly in relevant cellular contexts
- Creative thinking: generate hypothesis, search in literature, raise questions to discuss
Computing environment setup¶
region_p
pip_p
Section 0: Sanity check¶
Check the basic information of the gene¶
- To gain a preliminary understanding of this gene’s expression—specifically, whether it is cell-specific—can help us quickly determine if our results are consistent with expectations.
Useful websites:
- check gene function, (immune) cell type specificity, tissue specifity, protein location: https://www.proteinatlas.org
- check gene position and structure: https://www.ncbi.nlm.nih.gov/gene/
- other collective information: https://www.genecards.org
Check the existing results which are inputs to this analysis¶
source('/data/interactive_analysis/rf2872/codes/cb_plot.R')
source('/data/interactive_analysis/rf2872/codes/utilis.R')
for(file in list.files("/data/colocalization/colocboost/R", pattern = ".R", full.names = T)){
source(file)
}
gene_name = 'RABEP1'
dir.create(paste0('plots/', gene_name), recursive = T)
get basic target gene information
target_gene_info <- get_gene_info(gene_name = gene_name)
target_gene_info
- $gene_info
A data.table: 1 x 14 region_id #chr start end TSS LD_matrix_id LD_sumstats_id LD_sumstats_id_old TADB_index TADB_id gene_start gene_end sliding_windows gene_name <chr> <chr> <dbl> <dbl> <int> <chr> <chr> <chr> <chr> <chr> <int> <int> <chr> <chr> ENSG00000029725 chr17 4282264 8400000 5282264 chr17:3524642-4611485,chr17:4611485-5782462,chr17:5782462-7411566,chr17:7411566-9201913 17_3524642-4611485,17_4611485-5782462,17_5782462-7411566,17_7411566-9201913 17_3524642-4611485,17_4611485_5782462,17_5782462_7411566,17_7411566_9201913 TADB_1182,TADB_1183 chr17_1059843_6175034,chr17_3710595_9397826 5282265 5386340 chr17:0-9397826,chr17:1059843-10729687,chr17:3710595-13143830,chr17:6187187-17353469,chr17:8250471-20190245 RABEP1 - $target_LD_ids
A matrix: 1 x 4 of type chr chr17:3524642-4611485 chr17:4611485-5782462 chr17:5782462-7411566 chr17:7411566-9201913 - $target_sums_ids
A matrix: 1 x 4 of type chr 17_3524642-4611485 17_4611485-5782462 17_5782462-7411566 17_7411566-9201913 - $gene_region
- 'chr17:4282264-8400000'
- $target_TAD_ids
A matrix: 1 x 2 of type chr chr17_1059843_6175034 chr17_3710595_9397826
gene_id = target_gene_info$gene_info$region_id
chrom = target_gene_info$gene_info$`#chr`
Take a quick look for the expression of target gene in ROSMAP bulk data, we don't want them to be too low
source('/data/interactive_analysis/rf2872/codes/utilis.R')
expression_in_rosmap_bulk(target_gene_info)
region_p
Bellenguez et al GWAS signals has many overlap with CS from other xQTL sources. This motivates us to look further. The figure above shows the ranges of CS to give us a loci level idea. Below, we show the variants in those CS, color-coding the variants that are shared between them in the same color. In particular, AD GWAS signals are also captured by a few xQTL data, although at this point we don't have formal statistical (colocalization) evidences for these observations yet.
pip_p
This is done using ColocBoost. The most updated version of ColocBoost results are under path
s3://statfungen/ftp_fgc_xqtl/analysis_result/ColocBoost/2024_9/
cb_res <- readRDS(paste0("/data/analysis_result/ColocBoost/2024_9/",gene_id,"_res.rds") )
#save colocboost results
cb_res_table <- get_cb_summary(cb_res)
saveRDS(cb_res_table, paste0(gene_name, "_colocboost_res.rds"))
cb <- plot_cb(cb_res = cb_res, cex.pheno = 1.5, x.phen = -0.2)
options(repr.plot.width=6, repr.plot.height=6)
ggplot(RABEP1_int_res, aes(x = variant_id, y = qvalue_interaction)) +
geom_point(alpha = 0.7, size = 6) +
labs(title = "qvalue for RABEP1 csets in interaction association nalysis",
x = "Gene Name",
y = "qvalue_interaction",
size = "qvalue_interaction") +
theme_minimal(base_size = 14) +
theme(panel.background = element_blank(),
panel.grid.major = element_line(color = "grey80"),
legend.position = NULL,
axis.text.x = element_text(angle = 45, hjust = 1)) + ylim(0,1)
# scale_color_manual(values = colorRampPalette(brewer.pal(8, "Set1"))(length(unique(flat_var$gene_name))))
ggsave('plots/RABEP1/sec11.interaction_association_RABEP1_lessPIP25.pdf', height = 5, width = 8)
# colocalized variants
cb_res_table
| colocalized phenotypes | purity | # variants | highest VCP | colocalized index | colocalized variants | max_abs_z_variant | cset_id |
|---|---|---|---|---|---|---|---|
| <chr> | <dbl> | <dbl> | <dbl> | <chr> | <chr> | <chr> | <chr> |
| Ast; Exc; Inh; AC; PCC; pQTL | 0.8004688 | 34 | 0.1598137 | 5933; 5403; 5463; 5430; 5924; 5932; 5472; 6046; 5442; 5436; 6010; 5480; 6022; 5460; 5971; 5525; 6254; 6280; 5883; 5911; 5898; 5817; 5596; 6076; 6077; 5844; 5499; 5528; 5559; 5592; 5564; 5570; 5506; 5593 | chr17:5359454:A:G; chr17:5358271:G:GTTA; chr17:5378694:T:C; chr17:5359234:T:C; chr17:5278766:C:T; chr17:5367119:T:C; chr17:5276110:C:T; chr17:5405283:G:A; chr17:5410487:TG:T; chr17:5372623:G:A; chr17:5280229:G:A; chr17:5267575:T:C; chr17:5271449:G:A; chr17:5356361:C:A; chr17:5298778:T:C; chr17:5345931:G:A; chr17:5374303:C:A; chr17:5334512:A:G; chr17:5350822:C:G; chr17:5273595:G:A; chr17:5282369:T:C; chr17:5272779:T:A; chr17:5298656:ATT:AT; chr17:5339674:CT:C; chr17:5286950:A:G; chr17:5283597:G:A; chr17:5275572:CT:CTT; chr17:5293087:C:T; chr17:5298227:G:A; chr17:5294580:CT:C; chr17:5383759:TTTATC:T; chr17:5383760:TTA:*; chr17:5287167:G:A; chr17:5291886:A:G | chr17:5383759:TTTATC:T | coloc_sets:Y2_Y5_Y6_Y8_Y9_Y11:CS1 |
| Mic; Oli; AD_Bellenguez_2022 | 0.5972950 | 68 | 0.4333858 | 5215; 5154; 5317; 5160; 5158; 5171; 5967; 5474; 5628; 5165; 5166; 5666; 5704; 5882; 5865; 5565; 5588; 5877; 5899; 5860; 5841; 5835; 5567; 5848; 5913; 5518; 5866; 5763; 5938; 5703; 5838; 5765; 5766; 5787; 5770; 5727; 5070; 5934; 5049; 5046; 5925; 5690; 5691; 5700; 5611; 5612; 5949; 5715; 5863; 4795; 4713; 5742; 4912; 5125; 5224; 5286; 5302; 5140; 5710; 5635; 5681; 5615; 5634; 5483; 5724; 5743; 5711; 5550 | chr17:5229833:T:C; chr17:5243359:T:TA; chr17:5235685:G:A; chr17:5241401:A:G; chr17:5235009:C:T; chr17:5251170:CT:CTTT; chr17:5252624:C:T; chr17:5255419:T:C; chr17:5233752:G:A; chr17:5232065:A:C; chr17:5214511:G:A; chr17:5215656:T:G; chr17:5220566:G:A; chr17:5237104:G:T; chr17:5319346:A:C; chr17:5300901:A:G; chr17:5301435:G:A; chr17:5317030:G:A; chr17:5317045:C:T; chr17:5318016:G:A; chr17:5363707:G:T; chr17:5319369:TA:T; chr17:5341776:G:A; chr17:5306542:T:C; chr17:5316491:T:A; chr17:5302275:C:T; chr17:5365888:T:C; chr17:5337701:A:G; chr17:5306215:CAGAA:AAGAA; chr17:5279135:G:A; chr17:5281172:T:G; chr17:5322499:C:T; chr17:5324584:A:G; chr17:5324697:G:A; chr17:5319350:CAAAAA:C; chr17:5327572:G:A; chr17:5286121:T:C; chr17:5290954:A:G; chr17:5293114:C:T; chr17:5236512:G:A; chr17:5236513:C:T; chr17:5305217:T:TG; chr17:5360990:G:A; chr17:5328117:G:A; chr17:5328323:A:G; chr17:5313703:A:G; chr17:5359952:G:A; chr17:5318880:G:C; chr17:5330522:C:T; chr17:5345387:G:T; chr17:5342744:A:T; chr17:5342855:A:G; chr17:5328907:C:T; chr17:5323543:A:AT; chr17:5296937:C:T; chr17:5344437:C:A; chr17:5351138:GAC:G; chr17:5341558:G:A; chr17:5358448:A:G; chr17:5318776:C:T; chr17:5338555:C:T; chr17:5337649:T:A; chr17:5293315:C:T; chr17:5340167:A:G; chr17:5138409:A:G; chr17:5356470:C:G; chr17:5125400:G:GT; chr17:5177049:A:C | chr17:5229833:T:C | coloc_sets:Y1_Y3_Y15:MergeCS1 |
# effect sign for each coloc sets
get_effect_sign_csets(cb_res)
- $`coloc_sets:Y2_Y5_Y6_Y8_Y9_Y11:CS1`
A data.frame: 34 x 7 variants Ast Exc Inh AC PCC pQTL <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> chr17:5359454:A:G chr17:5359454:A:G -3.715741 -4.979460 -4.995939 15.20998 15.31915 12.31771 chr17:5267575:T:C chr17:5267575:T:C -4.731993 -4.394953 -4.696897 12.97605 14.08966 11.76727 chr17:5276110:C:T chr17:5276110:C:T 4.455271 4.787557 4.721195 -14.13540 -14.48959 -12.16723 chr17:5271449:G:A chr17:5271449:G:A 4.278002 4.625743 4.659380 -14.04984 -14.60270 -12.38393 chr17:5358271:G:GTTA chr17:5358271:G:GTTA -3.645044 -4.958211 -5.036522 15.22943 15.14271 11.96296 chr17:5359234:T:C chr17:5359234:T:C -3.948051 -4.776894 -4.927096 15.06744 14.97976 12.21780 chr17:5278766:C:T chr17:5278766:C:T -3.946444 -4.802468 -4.831753 14.11431 14.75761 12.21210 chr17:5378694:T:C chr17:5378694:T:C -3.359199 -4.363433 -4.323898 16.02462 16.04294 12.50741 chr17:5273595:G:A chr17:5273595:G:A 4.195881 4.639293 4.682148 -13.97326 -14.42146 -12.31565 chr17:5272779:T:A chr17:5272779:T:A 4.192765 4.618376 4.691182 -14.01101 -14.39611 -12.31565 chr17:5372623:G:A chr17:5372623:G:A -3.256514 -4.102272 -4.198589 15.82085 15.96749 13.08882 chr17:5280229:G:A chr17:5280229:G:A -3.907854 -4.683766 -4.596392 14.18343 14.76471 12.30127 chr17:5374303:C:A chr17:5374303:C:A -3.331431 -3.959980 -4.301004 15.78624 15.80720 13.05944 chr17:5275572:CT:CTT chr17:5275572:CT:CTT 4.298248 4.830544 4.738207 -13.71224 -14.09672 -12.03223 chr17:5367119:T:C chr17:5367119:T:C -3.990546 -4.675436 -4.630625 14.83747 15.25827 11.95764 chr17:5286950:A:G chr17:5286950:A:G 4.485925 4.975570 4.522980 -14.14359 -14.50978 -11.29176 chr17:5405283:G:A chr17:5405283:G:A -3.216193 -3.993719 -4.548877 15.97231 15.73064 12.68335 chr17:5410487:TG:T chr17:5410487:TG:T -3.216193 -3.993719 -4.548877 15.97231 15.73064 12.68335 chr17:5345931:G:A chr17:5345931:G:A -4.318291 -5.095105 -4.745683 14.17232 14.46912 11.38249 chr17:5356361:C:A chr17:5356361:C:A -4.305448 -5.069807 -4.768804 14.22344 14.52214 11.23184 chr17:5350822:C:G chr17:5350822:C:G -4.305448 -5.069807 -4.768804 14.07878 14.50681 11.28134 chr17:5334512:A:G chr17:5334512:A:G -4.180774 -5.034225 -4.521822 14.37477 14.48051 11.40504 chr17:5298778:T:C chr17:5298778:T:C -4.245913 -4.944436 -4.865619 14.18081 14.51864 11.09431 chr17:5383759:TTTATC:T chr17:5383759:TTTATC:T -3.185448 -3.933164 -3.893642 15.94556 16.10926 12.78796 chr17:5383760:TTA:* chr17:5383760:TTA:* -3.185448 -3.933164 -3.893642 15.94556 16.10926 12.78796 chr17:5339674:CT:C chr17:5339674:CT:C -4.064495 -4.906945 -4.763990 14.21078 14.52214 11.35655 chr17:5282369:T:C chr17:5282369:T:C -4.179875 -4.976664 -4.703051 14.20808 14.55017 11.14404 chr17:5287167:G:A chr17:5287167:G:A 4.251462 4.924872 4.618349 -14.22344 -14.52214 -11.23184 chr17:5291886:A:G chr17:5291886:A:G 4.251462 4.924872 4.618349 -14.22344 -14.52214 -11.23184 chr17:5298227:G:A chr17:5298227:G:A -4.252675 -4.924840 -4.908130 13.72524 13.86328 10.89662 chr17:5293087:C:T chr17:5293087:C:T -4.252675 -4.924840 -4.908130 13.72524 13.86328 10.84194 chr17:5294580:CT:C chr17:5294580:CT:C -4.252675 -4.924840 -4.908130 13.67972 13.78415 10.60261 chr17:5283597:G:A chr17:5283597:G:A -4.180482 -4.989203 -5.049722 13.65083 13.82760 10.66898 chr17:5298656:ATT:AT chr17:5298656:ATT:AT -4.122928 -4.952047 -4.659619 13.70835 14.51708 10.25043 - $`coloc_sets:Y1_Y3_Y15:MergeCS1`
A data.frame: 68 x 4 variants Mic Oli AD_Bellenguez_2022 <chr> <dbl> <dbl> <dbl> chr17:5241401:A:G chr17:5241401:A:G 9.546647 -5.653962 6.983607 chr17:5233752:G:A chr17:5233752:G:A 9.501270 -5.479010 7.016393 chr17:5255419:T:C chr17:5255419:T:C 9.519035 -5.524893 6.918699 chr17:5235685:G:A chr17:5235685:G:A 9.565053 -5.376821 7.000000 chr17:5235009:C:T chr17:5235009:C:T 9.536039 -5.166785 6.943089 chr17:5237104:G:T chr17:5237104:G:T 9.314725 -5.173594 6.991803 chr17:5365888:T:C chr17:5365888:T:C 7.940102 -6.428884 6.454545 chr17:5279135:G:A chr17:5279135:G:A 8.259632 -6.299369 6.270492 chr17:5305217:T:TG chr17:5305217:T:TG 8.078104 -6.153765 6.622429 chr17:5236512:G:A chr17:5236512:G:A 9.173383 -4.873138 7.182540 chr17:5236513:C:T chr17:5236513:C:T 9.173383 -4.873138 7.024390 chr17:5313703:A:G chr17:5313703:A:G 8.078104 -6.153765 6.352459 chr17:5318880:G:C chr17:5318880:G:C 8.078104 -6.153765 6.344262 chr17:5345387:G:T chr17:5345387:G:T 8.078104 -6.153765 6.336066 chr17:5342744:A:T chr17:5342744:A:T 8.078104 -6.153765 6.336066 chr17:5293114:C:T chr17:5293114:C:T 8.078104 -6.153765 6.319672 chr17:5296937:C:T chr17:5296937:C:T 8.078104 -6.153765 6.311475 chr17:5344437:C:A chr17:5344437:C:A 8.078104 -6.153765 6.303279 chr17:5351138:GAC:G chr17:5351138:GAC:G 8.078104 -6.153765 6.296000 chr17:5341558:G:A chr17:5341558:G:A 8.078104 -6.153765 6.286885 chr17:5338555:C:T chr17:5338555:C:T 8.078104 -6.153765 6.270492 chr17:5337649:T:A chr17:5337649:T:A 8.078104 -6.153765 6.262295 chr17:5293315:C:T chr17:5293315:C:T 8.078104 -6.153765 6.252033 chr17:5340167:A:G chr17:5340167:A:G 8.078104 -6.153765 6.254098 chr17:5356470:C:G chr17:5356470:C:G 8.078104 -6.153765 6.195122 chr17:5286121:T:C chr17:5286121:T:C 8.140700 -6.158428 6.040650 chr17:5342855:A:G chr17:5342855:A:G 8.108684 -5.987921 6.327869 chr17:5327572:G:A chr17:5327572:G:A 7.768881 -6.171861 6.360656 chr17:5360990:G:A chr17:5360990:G:A 7.722492 -6.096035 6.504132 chr17:5318776:C:T chr17:5318776:C:T 7.834962 -5.937287 6.278689 ... ... ... ... ... chr17:5215656:T:G chr17:5215656:T:G 9.234237 -3.991749 7.115702 chr17:5214511:G:A chr17:5214511:G:A 9.234237 -3.991749 7.115702 chr17:5358448:A:G chr17:5358448:A:G 8.445012 -4.839656 6.372881 chr17:5317030:G:A chr17:5317030:G:A 6.638342 -6.597636 4.690265 chr17:5317045:C:T chr17:5317045:C:T 6.638342 -6.597636 4.681416 chr17:5318016:G:A chr17:5318016:G:A 6.638342 -6.597636 4.637168 chr17:5300901:A:G chr17:5300901:A:G 6.638342 -6.597636 4.637168 chr17:5301435:G:A chr17:5301435:G:A 6.638342 -6.597636 4.628319 chr17:5363707:G:T chr17:5363707:G:T 6.638342 -6.597636 4.522124 chr17:5319369:TA:T chr17:5319369:TA:T 6.460354 -6.529303 4.903622 chr17:5341776:G:A chr17:5341776:G:A 6.619266 -6.532567 4.584071 chr17:5138409:A:G chr17:5138409:A:G 8.404479 -3.925110 6.568182 chr17:5125400:G:GT chr17:5125400:G:GT 8.406748 -3.908565 6.492424 chr17:5324584:A:G chr17:5324584:A:G 6.419290 -6.195226 4.654867 chr17:5177049:A:C chr17:5177049:A:C 8.213958 -3.579329 6.457364 chr17:5229833:T:C chr17:5229833:T:C -9.591174 4.332670 0.000000 chr17:5243359:T:TA chr17:5243359:T:TA 9.582396 -5.341647 0.000000 chr17:5251170:CT:CTTT chr17:5251170:CT:CTTT 9.405356 -5.221270 0.000000 chr17:5252624:C:T chr17:5252624:C:T 9.519035 -5.524893 0.000000 chr17:5232065:A:C chr17:5232065:A:C 9.275668 -4.022935 0.000000 chr17:5319346:A:C chr17:5319346:A:C 6.365804 -6.619017 0.000000 chr17:5306542:T:C chr17:5306542:T:C 6.590958 -6.508951 0.000000 chr17:5316491:T:A chr17:5316491:T:A 6.958697 -6.493451 0.000000 chr17:5302275:C:T chr17:5302275:C:T 6.701620 -6.481260 0.000000 chr17:5306215:CAGAA:AAGAA chr17:5306215:CAGAA:AAGAA 7.921957 -6.395647 0.000000 chr17:5281172:T:G chr17:5281172:T:G 8.259632 -6.299369 0.000000 chr17:5322499:C:T chr17:5322499:C:T 6.419290 -6.195226 0.000000 chr17:5324697:G:A chr17:5324697:G:A 6.419290 -6.195226 0.000000 chr17:5319350:CAAAAA:C chr17:5319350:CAAAAA:C 8.103984 -6.189082 0.000000 chr17:5290954:A:G chr17:5290954:A:G 8.078104 -6.153765 0.000000
# LD between coloc sets
get_between_purity_simple(cb_res, gene.name = gene_id, path = '/data/colocalization/QTL_data/eQTL/')
| coloc_csets_1 | coloc_csets_2 | min_abs_cor | max_abs_cor | median_abs_cor |
|---|---|---|---|---|
| coloc_sets:Y2_Y5_Y6_Y8_Y9_Y11:CS1 | coloc_sets:Y1_Y3_Y15:MergeCS1 | 0.28265861927476 | 0.414312231992044 | 0.360688534423188 |
Here, different colors refer to different 95% Colocalization Sets (CoS, a metric developed in ColocBoost indicating that there is 95% probabilty that this CoS captures a colocalization event). We only included ROSMAP data for this particular ColocBoost analysis. In this case, we observe cell specific eQTL, bulk sQTL colocalization on ROSMAP data with AD as two separate CoS, suggesting two putative causal signals. We did not detect colocalization with pQTL of statistical significance although from Section 1 there are some overlap with pQTL signals in fine-mapping CS, the overlapped variants in CS have small PIP.
Section 3: Refinement of colocalized loci with other AD GWAS¶
Here we refine the colocalization with other AD GWAS to iron out any heterogeniety between studies (heterogeniety can come from many sources), to get additional candidate loci from these more heterogenous sources as candidates to study.
AD_cohorts <- c('AD_Jansen_2021', 'AD_Bellenguez_EADB_2022', 'AD_Bellenguez_EADI_2022',
'AD_Kunkle_Stage1_2019', 'AD_Wightman_Excluding23andMe_2021',
'AD_Wightman_ExcludingUKBand23andME_2021', 'AD_Wightman_Full_2021')
cb_ad <- plot_cb(cb_res = cb_res, cex.pheno = 1.5, x.phen = -0.2, add_gwas = TRUE, gene_id = gene_id, cohorts = AD_cohorts)
No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.
pdf('plots/RABEP1/sec3.colocboost_res_allad.pdf', width = 10, height = 5)
replayPlot(cb_ad$p)
dev.off()
Section 4: Assessment of multi-context xQTL effect sizes¶
Option 1: ColocBoost + MASH¶
Use colocboost variants and check for mash posterior contrast to see if the effect size are shared or specific or even opposite. Advantage is that colocboost result is AD GWAS informed; issue is that marginal posterior effects is not always the joint
mash_p <- mash_plot(gene_name = 'RABEP1')
for (plot in mash_p) {
print(plot)
}
Option 2: mvSuSiE¶
Use mvSuSiE multicontext fine-mapping results --- the bubble plot to check posterior effects. Issue is that we don't have this results yet, and this is limited to one cohort at a time, without information from AD.
We should go for option 1 by default and if we want to make claim about opposite effect size we double-check with mvSuSiE multicontext analysis.
The most updated version of cTWAS analysis are under path
s3://statfungen/ftp_fgc_xqtl/analysis_result/cTWAS/
TWAS results¶
We report TWAS from all contexts and methods from the pipeline. Here we will filter it down to the best performing methods and only keep contexts that are significant.
plot_TWAS_res(gene_id = gene_id, gene_name = gene_name)
MR results¶
This is only available for genes that are deemed significant in TWAS and have summary statistics available for effect size and standard errors in GWAS, in addition to z-scores --- current version does not support z-scores although we will soon also support z-scores in MR using MAF from reference panel.
cTWAS results¶
To be updated soon.
A quick analysis: using the xQTL-AD summary table (flatten table)¶
We extract from xQTL-AD summary table the variants to get other genes also have CS with the variants shared by target gene and AD.
multigene_flat <- get_multigene_multicontext_flatten('Fungen_xQTL_allQTL.overlapped.gwas.export.RABEP1.rds', sQTL = 'no_MSBB')
multigene_flat
| gene_id | #chr | start | end | gene_name | contexts |
|---|---|---|---|---|---|
| <chr> | <chr> | <int> | <int> | <chr> | <chr> |
| ENSG00000004660 | chr17 | 3893052 | 3893053 | CAMKK1 | MiGA_THA_eQTL |
| ENSG00000004975 | chr17 | 7234516 | 7234517 | DVL2 | MiGA_THA_eQTL |
| ENSG00000005100 | chr17 | 5468981 | 5468982 | DHX33 | MiGA_GTS_eQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000006047 | chr17 | 7294638 | 7294639 | YBX2 | ROSMAP_PCC_sQTL |
| ENSG00000007168 | chr17 | 2593209 | 2593210 | PAFAH1B1 | OPC_Kellis_eQTL |
| ENSG00000040531 | chr17 | 3636458 | 3636459 | CTNS | MiGA_GFM_eQTL,MiGA_GTS_eQTL,MiGA_SVZ_eQTL,MiGA_THA_eQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000040633 | chr17 | 7239721 | 7239722 | PHF23 | MiGA_SVZ_eQTL,MiGA_THA_eQTL,ROSMAP_AC_sQTL |
| ENSG00000065320 | chr17 | 9021509 | 9021510 | NTN1 | MiGA_THA_eQTL |
| ENSG00000072778 | chr17 | 7217124 | 7217125 | ACADVL | MiGA_SVZ_eQTL,MiGA_THA_eQTL,Ast_10_Kellis_eQTL,ROSMAP_PCC_sQTL |
| ENSG00000072818 | chr17 | 7336528 | 7336529 | ACAP1 | MiGA_SVZ_eQTL,MiGA_THA_eQTL,BM_36_MSBB_eQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000072849 | chr17 | 5486810 | 5486811 | DERL2 | MiGA_GTS_eQTL,MiGA_THA_eQTL |
| ENSG00000074356 | chr17 | 3846245 | 3846246 | NCBP3 | MiGA_SVZ_eQTL,ROSMAP_PCC_sQTL |
| ENSG00000074370 | chr17 | 3964463 | 3964464 | ATP2A3 | MiGA_GTS_eQTL |
| ENSG00000074755 | chr17 | 4143029 | 4143030 | ZZEF1 | MiGA_GTS_eQTL,ROSMAP_PCC_sQTL |
| ENSG00000091592 | chr17 | 5619423 | 5619424 | NLRP1 | ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL,STARNET_eQTL |
| ENSG00000091622 | chr17 | 6556554 | 6556555 | PITPNM3 | MiGA_SVZ_eQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000091640 | chr17 | 4967816 | 4967817 | SPAG7 | Knight_eQTL,BM_10_MSBB_eQTL,BM_22_MSBB_eQTL,Exc_DeJager_eQTL,DLPFC_DeJager_eQTL,PCC_DeJager_eQTL,Exc_mega_eQTL,Inh_mega_eQTL,DLPFC_Bennett_pQTL,monocyte_ROSMAP_eQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000108509 | chr17 | 4987674 | 4987675 | CAMTA2 | MiGA_GTS_eQTL,MiGA_THA_eQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000108515 | chr17 | 4948091 | 4948092 | ENO3 | MiGA_SVZ_eQTL,AC_DeJager_eQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000108518 | chr17 | 4949060 | 4949061 | PFN1 | MiGA_SVZ_eQTL,ROSMAP_PCC_sQTL |
| ENSG00000108523 | chr17 | 4940007 | 4940008 | RNF167 | MiGA_THA_eQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000108528 | chr17 | 4940052 | 4940053 | SLC25A11 | ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000108556 | chr17 | 4934437 | 4934438 | CHRNE | MiGA_THA_eQTL,BM_36_MSBB_eQTL,AC_DeJager_eQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000108559 | chr17 | 5419675 | 5419676 | NUP88 | MiGA_GFM_eQTL,MiGA_THA_eQTL,BM_10_MSBB_eQTL,BM_22_MSBB_eQTL,BM_44_MSBB_eQTL,AC_DeJager_eQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL,STARNET_eQTL |
| ENSG00000108561 | chr17 | 5448829 | 5448830 | C1QBP | MiGA_SVZ_eQTL,Exc_DeJager_eQTL,Inh_DeJager_eQTL,Oli_Kellis_eQTL,Exc_Kellis_eQTL,Inh_Kellis_eQTL,Exc_mega_eQTL,Inh_mega_eQTL,Oli_mega_eQTL,ROSMAP_AC_sQTL,STARNET_eQTL |
| ENSG00000108590 | chr17 | 6651633 | 6651634 | MED31 | MiGA_THA_eQTL,BM_10_MSBB_eQTL |
| ENSG00000108839 | chr17 | 6996048 | 6996049 | ALOX12 | MiGA_GFM_eQTL,MiGA_SVZ_eQTL,BM_44_MSBB_eQTL |
| ENSG00000108947 | chr17 | 7705201 | 7705202 | EFNB3 | MiGA_SVZ_eQTL,BM_22_MSBB_eQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000108961 | chr17 | 8288653 | 8288654 | RANGRF | MiGA_GTS_eQTL,Inh_Kellis_eQTL |
| ENSG00000125434 | chr17 | 8295399 | 8295400 | SLC25A35 | MiGA_GFM_eQTL |
| ... | ... | ... | ... | ... | ... |
| ENSG00000183914 | chr17 | 7717353 | 7717354 | DNAH2 | MiGA_SVZ_eQTL,BM_10_MSBB_eQTL,Exc_mega_eQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000184619 | chr17 | 8376703 | 8376704 | KRBA2 | MiGA_GTS_eQTL,BM_10_MSBB_eQTL,BM_44_MSBB_eQTL,PCC_DeJager_eQTL,ROSMAP_AC_sQTL,STARNET_eQTL |
| ENSG00000185245 | chr17 | 4932276 | 4932277 | GP1BA | MiGA_SVZ_eQTL,MiGA_THA_eQTL |
| ENSG00000185722 | chr17 | 4263994 | 4263995 | ANKFY1 | ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000196388 | chr17 | 4997609 | 4997610 | INCA1 | MiGA_GTS_eQTL,PCC_DeJager_eQTL,ROSMAP_PCC_sQTL |
| ENSG00000196689 | chr17 | 3609410 | 3609411 | TRPV1 | ROSMAP_PCC_sQTL |
| ENSG00000198844 | chr17 | 8310240 | 8310241 | ARHGEF15 | MiGA_GTS_eQTL,MSBB_BM36_pQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000198920 | chr17 | 6640710 | 6640711 | KIAA0753 | AC_DeJager_eQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000215041 | chr17 | 7329392 | 7329393 | NEURL4 | DLPFC_Bennett_pQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000219200 | chr17 | 7012416 | 7012417 | RNASEK | MiGA_SVZ_eQTL,DLPFC_DeJager_eQTL,STARNET_eQTL |
| ENSG00000220205 | chr17 | 8163545 | 8163546 | VAMP2 | MiGA_GFM_eQTL,ROSMAP_AC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000221882 | chr17 | 3386316 | 3386317 | OR3A2 | BM_36_MSBB_eQTL |
| ENSG00000239697 | chr17 | 7549057 | 7549058 | TNFSF12 | MiGA_GTS_eQTL,MiGA_SVZ_eQTL |
| ENSG00000248871 | chr17 | 7549098 | 7549099 | TNFSF12-TNFSF13 | ROSMAP_PCC_sQTL |
| ENSG00000256806 | chr17 | 6651761 | 6651762 | C17orf100 | Exc_DeJager_eQTL,Exc_Kellis_eQTL,Exc_mega_eQTL |
| ENSG00000257950 | chr17 | 3696193 | 3696194 | P2RX5-TAX1BP3 | ROSMAP_PCC_sQTL |
| ENSG00000258315 | chr17 | 7014494 | 7014495 | C17orf49 | MiGA_SVZ_eQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000259224 | chr17 | 7481331 | 7481332 | SLC35G6 | MiGA_GTS_eQTL,MiGA_THA_eQTL |
| ENSG00000261915 | chr17 | 7319173 | 7319174 | AC026954.2 | MiGA_SVZ_eQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000262165 | chr17 | 4807012 | 4807013 | AC233723.1 | ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL,ROSMAP_PCC_sQTL |
| ENSG00000262302 | chr17 | 7262088 | 7262089 | AC003688.1 | ROSMAP_PCC_sQTL,ROSMAP_DLPFC_sQTL,STARNET_eQTL |
| ENSG00000262304 | chr17 | 3636248 | 3636249 | AC027796.3 | ROSMAP_PCC_sQTL |
| ENSG00000262481 | chr17 | 7404096 | 7404097 | TMEM256-PLSCR3 | ROSMAP_PCC_sQTL |
| ENSG00000262481 | chr17 | 7404096 | 7404097 | TMEM256 | ROSMAP_PCC_sQTL |
| ENSG00000262730 | chr17 | 7930621 | 7930622 | AC104581.2 | ROSMAP_DLPFC_sQTL |
| ENSG00000263620 | chr17 | 8162974 | 8162975 | AC129492.3 | ROSMAP_PCC_sQTL |
| ENSG00000263809 | chr17 | 8383186 | 8383187 | AC135178.3 | ROSMAP_AC_sQTL |
| ENSG00000277957 | chr17 | 7563286 | 7563287 | SENP3-EIF4A1 | MiGA_SVZ_eQTL,ROSMAP_AC_sQTL,ROSMAP_DLPFC_sQTL |
| ENSG00000282936 | chr17 | 6640455 | 6640456 | AC004706.3 | MiGA_GTS_eQTL,ROSMAP_PCC_sQTL |
| ENSG00000286190 | chr17 | 5501005 | 5501006 | AC055839.2 | MiGA_GTS_eQTL,MiGA_THA_eQTL,BM_10_MSBB_eQTL |
Other genes implicated are PROC and HS6ST1 in MiGA cohort which may share causal eQTL with RABEP1. Further look into the data-set --- using these genes as targets and repeating what we did above for RABEP1 --- might be needed to establish a more certain conclusion.
Alternatively, we may be able to apply a multi-gene statistical fine-mapping test on RABEP1 region to find these genes, as you will see in the section below.
A statistically solid approach: mvSuSiE multi-gene analysis¶
This multi-gene fine-mapping analysis was done for each xQTL context separately. We will need to check the results for all contexts where this gene has an xQTL, in order to identify if there are other genes also sharing the same xQTL with this target gene. We included other genes in the same TAD window along with this gene, and extended it into a sliding window approach to include multiple TADs just in case. You need to check the sliding windows belongs to that gene (TSS) on analysis repo.
sliding_windows <- target_gene_info$gene_info$sliding_windows %>% strsplit(., ',') %>% unlist %>% as.character
sliding_windows
- 'chr17:0-9397826'
- 'chr17:1059843-10729687'
- 'chr17:3710595-13143830'
- 'chr17:6187187-17353469'
- 'chr17:8250471-20190245'
The most updated version of mvSuSiE multi-gene results are under path
s3://statfungen/ftp_fgc_xqtl/analysis_result/mvsusie_multi_gene_test/multi_gene/ Currently it is still WIP. You can revisit this later when we prompt you to. Here is an example for RABEP1:
mnm_gene <- list()
for (window in sliding_windows) {
mnm_gene_tmp <- NULL
mnm_gene_tmp <- tryCatch(
readRDS(paste0('/data/analysis_result/mvsusie_multi_gene/multi_gene/ROSMAP_multi_gene.', window, '.mnm.rds')),
error = function(e) NULL
)
if (!is.null(mnm_gene_tmp)) {
if(target_gene_info$gene_info$region_id %in% mnm_gene_tmp$mvsusie_fitted$condition_names){
tryCatch({
p <- mvsusieR::mvsusie_plot(mnm_gene_tmp$mvsusie_fitted, sentinel_only = F, add_cs = T)
print(p) # This ensures the plot is displayed in JupyterLab
}, error = function(e) NULL)
} else {
message('There is mnm result for sliding window ',window,', but not include target gene ', gene_name, ' in CS')
}
mnm_gene <- append(mnm_gene, list(mnm_gene_tmp))
}
}
$pip_plot
$effect_plot
$z_plot
NULL
$effects
L1
ENSG00000141480 0.07508825
ENSG00000141503 0.07508825
ENSG00000161929 0.07508825
ENSG00000029725 0.07508825
$pip_plot
$effect_plot
$z_plot
NULL
$effects
L1
ENSG00000141480 0.07625814
ENSG00000141503 0.07625814
ENSG00000161929 0.07625814
ENSG00000029725 0.07625814
ENSG00000129226 0.07625814
$pip_plot
$effect_plot
$z_plot
NULL
$effects
L1 L3 L2
ENSG00000161929 0.5258283 1.367291e-06 -2.173809e-05
ENSG00000029725 0.5258283 1.367291e-06 -2.173809e-05
ENSG00000129226 0.5258283 1.367291e-06 -2.173809e-05
ENSG00000007237 0.5258283 1.367291e-06 -2.173809e-05
In this case, there is no statistical evidence for RABEP1 sharing any of its xQTL with other genes in ROSMAP Microglia data we looked into; although we have not analyzed MiGA this way yet (which showed some potential signals from the quick analysis above).
Generate a crude plot to determined whether the story is interesting¶
This is a crude version of the case study plot which shows the fsusie Effect (colored line), the gene body (black arrow), the epi-QTL (large dots with the same color as the effects) and ADGWAS cs position (small red dots).
Only produce the refine plot if we can see either:
- There are sharing snp between epi-QTL and AD CS
- There are the AD CS located within one of the effect range
- The crude plot suggest something interesting
options(repr.plot.width = 40, repr.plot.height = 40)
ggplot() + theme_bw() + facet_grid(cs_coverage_0.95+study + region ~ ., labeller = labeller(.rows = function(x) gsub("([_:,-])", "\n", x)), scale = "free_y") +
theme(text = element_text(size = 20), strip.text.y = element_text(size = 25, angle = 0.5)) +
# xlim(view_win) +
ylab("Estimated effect") +
# geom_line(data = haQTL_df %>% mutate(study = "haQTL effect") %>% filter(CS == 5),
# aes_string(y = "fun_plot", x = "x", col = "CS"), size = 4, col = "#00AEEF") +
geom_line(data = effect_of_interest ,
aes_string(y = "fun_plot", x = "x", col = "cs_coverage_0.95"), size = 4) +
geom_point(data = effect_of_interest ,
aes_string(y = "pip", x = "pos", col = "cs_coverage_0.95"), size = 4) +
theme(text = element_text(size = 40), strip.text.y = element_text(size = 15, angle = 0.5),
axis.text.x = element_text(size = 40), axis.title.x = element_text(size = 40)) +
xlab("Position") +
ylab("Estimated\neffect") +
geom_segment(arrow = arrow(length = unit(1, "cm")), aes(x = gene_start, xend = gene_end, y = 1, yend = 1), size = 6,
data = tar_gene_info$gene_info, alpha = 0.3) +
geom_text(aes(x = (gene_start + gene_end) / 2, y = 1 , label = gene_name), size = 10,
data = tar_gene_info$gene_info)+
geom_point(aes(x = pos, y = pip ) ,color = "red", data = flatten_table%>%filter( str_detect(study,"AD_") , cs_coverage_0.95 != 0 )%>%mutate(AD_study = study%>%str_replace_all("_","\n" ))%>%select(-study,-region,-cs_coverage_0.95) )
Section 8: Context focused validation in other xQTL data¶
see notebook
add fake version for now, so you don't have to refer to above link
Background: our "discovery set" is ROSMAP but we have additional "validation" sets including:
- STARNET
- MiGA
- KnightADRC
- MSBB
- metaBrain
- UKB pQTL
TODO:
- Get from Carlos WashU CSF based resource (pQTL and metabolomic QTL)
This section shows verification of findings from these data-sets. In principle we should check them through sections 1-6 more formally. In practice we will start with colocalization via colocboost --- since our study is genetics (variant and loci level) focused. We can selectively follow them up for potentially intereting validations. We therefore only demonstrate validation via colocboost as a starting point.
finempping_contexts <- readRDS(paste0(gene_name, '_finemapping_contexts.rds')) # from sec1
finempping_contexts <- get_norosmap_contexts(finempping_contexts)
cb_ad <- plot_cb(cb_res = cb_res, cex.pheno = 1.5, x.phen = -0.2, add_QTL = TRUE, cohorts = finempping_contexts, gene_id = gene_id)
No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.No pvalue cutoff. Extract all variants names.
In conclusion from what's shown above, when we check the association signals in STARNET and MiGA on colocalization established from ROSMAP and AD GWAS, we see additional evidences.
APOE interaction¶
options(repr.plot.width=6, repr.plot.height=6)
ggplot(RABEP1_int_res, aes(x = variant_id, y = qvalue_interaction)) +
geom_point(alpha = 0.7, size = 6) +
labs(title = "qvalue for RABEP1 csets in interaction association nalysis",
x = "Gene Name",
y = "qvalue_interaction",
size = "qvalue_interaction") +
theme_minimal(base_size = 14) +
theme(panel.background = element_blank(),
panel.grid.major = element_line(color = "grey80"),
legend.position = NULL,
axis.text.x = element_text(angle = 45, hjust = 1)) + ylim(0,1)
# scale_color_manual(values = colorRampPalette(brewer.pal(8, "Set1"))(length(unique(flat_var$gene_name))))
ggsave('plots/RABEP1/sec11.interaction_association_RABEP1_lessPIP25.pdf', height = 5, width = 8)
In conclusion, there is no interaction QTL with APOE identified.
vars_p
apoe_p
Section 11: Functional annotations of selected loci¶
see notebook
TODO
- Touch base with Ryan on the snATAC annotations
- Run this by Pavel to see if there are additional comments on how we do this
func_p
options(repr.plot.width=12, repr.plot.height=6)
if(!is.null(flat_var)){
ggplot(flat_var, aes(x = gene_name, y = pip, size = pip)) +
geom_point(alpha = 0.7) +
labs(title = paste0("PIP values for trans fine mapped Genes in ", gene_name ," csets with AD"),
x = "Gene Name",
y = "PIP",
size = "PIP",
color = "CS Coverage 0.95 Min Corr") +
theme_minimal(base_size = 14) +
theme(panel.background = element_blank(),
panel.grid.major = element_line(color = "grey80"),
legend.position = NULL,
axis.text.x = element_text(angle = 45, hjust = 1))
# scale_color_manual(values = colorRampPalette(brewer.pal(8, "Set1"))(length(unique(flat_var$gene_name))))
ggsave(paste0('plots/RABEP1/sec12.trans_fine_mapping_',gene_name,'.pdf'), height = 5, width = 8)
} else{
message('There are no detectable trans signals for ', gene_name)
}
Creative thinking: generate hypothesis, search in literature, raise questions to discuss¶
You can now generate some preliminary hypotheses based on the above results. Next, you should search for evidence in the literature to support or refine these hypotheses and identify additional analyses needed to confirm them.